Development of biomarker classifiers from high-dimensional data
نویسندگان
چکیده
منابع مشابه
Development of biomarker classifiers from high-dimensional data
Recent development of high-throughput technology has accelerated interest in the development of molecular biomarker classifiers for safety assessment, disease diagnostics and prognostics, and prediction of response for patient assignment. This article reviews and evaluates some important aspects and key issues in the development of biomarker classifiers. Development of a biomarker classifier fo...
متن کاملClass-imbalanced classifiers for high-dimensional data
A class-imbalanced classifier is a decision rule to predict the class membership of new samples from an available data set where the class sizes differ considerably. When the class sizes are very different, most standard classification algorithms may favor the larger (majority) class resulting in poor accuracy in the minority class prediction. A class-imbalanced classifier typically modifies a ...
متن کاملProbabilistic classifiers with high-dimensional data.
For medical classification problems, it is often desirable to have a probability associated with each class. Probabilistic classifiers have received relatively little attention for small n large p classification problems despite of their importance in medical decision making. In this paper, we introduce 2 criteria for assessment of probabilistic classifiers: well-calibratedness and refinement a...
متن کاملTree-based Ensemble Classifiers for High-dimensional Data
Building a classification model from thousands of available predictor variables with a relatively small sample size presents challenges for most traditional classification algorithms. When the number of samples is much smaller than the number of predictors, there can be a multiplicity of good classification models. An ensemble classifier combines multiple single classifiers to improve classific...
متن کاملHyperSurface Classifiers Ensemble for High Dimensional Data Sets
Based on Jordan Curve Theorem, a universal classification method called HyperSurface Classifier (HSC) has recently been proposed. Experimental results show that in three-dimensional space, this method works fairly well in both accuracy and efficiency even for large size data up to 10. However, what we really need is an algorithm that can deal with data not only of massive size but also of high ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Briefings in Bioinformatics
سال: 2009
ISSN: 1477-4054,1467-5463
DOI: 10.1093/bib/bbp016